De Novo Assembly and Transcriptome Analysis of the Rubber Tree (Hevea brasiliensis) and SNP Markers Development for Rubber Biosynthesis Pathways
نویسندگان
چکیده
Hevea brasiliensis (Willd. Ex Adr. Juss.) Muell.-Arg. is the primary source of natural rubber that is native to the Amazon rainforest. The singular properties of natural rubber make it superior to and competitive with synthetic rubber for use in several applications. Here, we performed RNA sequencing (RNA-seq) of H. brasiliensis bark on the Illumina GAIIx platform, which generated 179,326,804 raw reads on the Illumina GAIIx platform. A total of 50,384 contigs that were over 400 bp in size were obtained and subjected to further analyses. A similarity search against the non-redundant (nr) protein database returned 32,018 (63%) positive BLASTx hits. The transcriptome analysis was annotated using the clusters of orthologous groups (COG), gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Pfam databases. A search for putative molecular marker was performed to identify simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs). In total, 17,927 SSRs and 404,114 SNPs were detected. Finally, we selected sequences that were identified as belonging to the mevalonate (MVA) and 2-C-methyl-D-erythritol 4-phosphate (MEP) pathways, which are involved in rubber biosynthesis, to validate the SNP markers. A total of 78 SNPs were validated in 36 genotypes of H. brasiliensis. This new dataset represents a powerful information source for rubber tree bark genes and will be an important tool for the development of microsatellites and SNP markers for use in future genetic analyses such as genetic linkage mapping, quantitative trait loci identification, investigations of linkage disequilibrium and marker-assisted selection.
منابع مشابه
Comparative Transcriptome Analysis of Latex Reveals Molecular Mechanisms Underlying Increased Rubber Yield in Hevea brasiliensis Self-Rooting Juvenile Clones
Rubber tree (Hevea brasiliensis) self-rooting juvenile clones (JCs) are promising planting materials for rubber production. In a comparative trial between self-rooting JCs and donor clones (DCs), self-rooting JCs exhibited better performance in rubber yield. To study the molecular mechanism associated with higher rubber yield in self-rooting JCs, we sequenced and comparatively analyzed the late...
متن کاملDe novo hybrid assembly of the rubber tree genome reveals evidence of paleotetraploidy in Hevea species
Para rubber tree (Hevea brasiliensis) is an important economic species as it is the sole commercial producer of high-quality natural rubber. Here, we report a de novo hybrid assembly of BPM24 accession, which exhibits resistance to major fungal pathogens in Southeast Asia. Deep-coverage 454/Illumina short-read and Pacific Biosciences (PacBio) long-read sequence data were acquired to generate a ...
متن کاملInsights into rubber biosynthesis from transcriptome analysis of Hevea brasiliensis latex.
Hevea brasiliensis is the most widely cultivated species for commercial production of natural rubber (cis-polyisoprene). In this study, 10,040 expressed sequence tags (ESTs) were generated from the latex of the rubber tree, which represents the cytoplasmic content of a single cell type, in order to analyse the latex transcription profile with emphasis on rubber biosynthesis-related genes. A tot...
متن کاملTranscriptome-Wide Identification and Characterization of MYB Transcription Factor Genes in the Laticifer Cells of Hevea brasiliensis
MYB transcription factors hold vital roles in the regulation of plant secondary metabolic pathways. Laticifers in rubber trees (Hevea brasiliensis) are of primary importance in natural rubber production because natural rubber is formed and stored within these structures. To understand the role of MYB transcription factors in the specialized cells, we identified 44 MYB genes (named HblMYB1 to Hb...
متن کاملTranscriptome analyses reveal molecular mechanism underlying tapping panel dryness of rubber tree (Hevea brasiliensis)
Tapping panel dryness (TPD) is a serious threat to natural rubber yields from rubber trees, but the molecular mechanisms underlying TPD remain poorly understood. To identify TPD-related genes and reveal these molecular mechanisms, we sequenced and compared the transcriptomes of bark between healthy and TPD trees. In total, 57,760 assembled genes were obtained and analyzed in details. In contras...
متن کامل